

Super-wetting and Super-spreading

Glen McHale, M. I. Newton, N. J. Shirtcliffe, C. C. Perry and S. Aqil

School of Science The Nottingham Trent University Nottingham NG11 8NS, UK

Acknowledgements EPSRC Grant GR/R02184/01

Overview

- 1. Roughness Induced Complete Wetting
 - Equilibrium wetting
 - Wenzel v Cassie form of films
- 2. Dynamic Wetting
 - Contact line forces
 - de Gennes-Hoffmann equation and Tanner's Law
- 3. Experimental Results
 - PDMS on lithographic surfaces
 - Sprout leaves

<u>Superwetting – Wenzel v Cassie</u>

Wenzel's Equation

- Based on roughness, r
- Superwetting (i.e. $\theta_e^{s} \rightarrow \theta_e^{w} = 0^{\circ}$) when
- Ignores any pre-wetting film

Cassie-Baxter (Complete Wetting)

- Two surfaces: fractions $\cos \theta_e^c = \varphi_s \cos \theta_1 + (1 \varphi_s) \cos \theta_2$ φ_s and $(1 - \varphi_s)$
- Film \rightarrow Solid θ_e^s & Own liquid $\theta = 0^\circ$ $\cos \theta_e^c = 1 + \varphi_s \left(\cos \theta_e^s 1 \right)$
- Assumes film exists and drop volume loss to film is small

$$\cos \theta_e^{W} = r \cos \theta_e^{S}$$
$$\theta_e^{S} < \cos^{-1}(1/r)$$

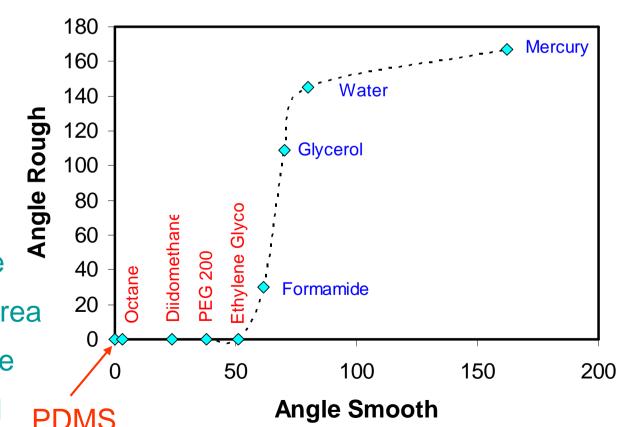
Drops on SU-8 Photoresist Pillars

• SU-8 Photoresist

Flat and bare 84°, flat and hydrophobised 115°, tall and 5 μm pattern 155°

0

- Super-wetting SU-8 photoresist $D = 15 \mu m, L = 2D$ $h = 43 \mu m$
- Wenzel Type
 1 μl drop on texture
 over 1 cm × 1 cm area
 Drop volume can be
 completely imbibed
 PDMS



Theory of Spreading

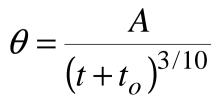
- Driving Force and Viscous Dissipation
 - Usual force is unresolved component of surface tension $F = \gamma_{LV} \left(\cos \theta_e^s - \cos \theta \right)$ Viscous dissipation is $T\dot{S} \approx \eta v_F^2 / \theta$
- Hoffmann-de Gennes

Dissipation must equal $v_{\rm E}F = v_E \propto \theta \left(\cos \theta_e^s - \cos \theta\right) \propto \theta \left(\theta^2 - \theta_e^{s^2}\right)$

Edge speed \propto cube of dynamic angle ($\theta_{e}^{s}=0^{o}$)

• Tanner's Law

Small drop of non-volatile liquid (vol const), complete wetting ($\theta_e^{s}=0^{\circ}$) and solve



Spreading on Rough Surfaces

• Driving Force Modified

Roughness modifies the component of surface tension

$$F = \gamma_{LV} \left(r \cos \theta_e^s - \cos \theta \right)$$

Hoffmann-de Gennes

Roughness term

$$v_E \propto (r-1)\theta + \theta \left(\theta^2 - r\theta_e^{s2}\right)/2$$

Edge speed \propto dynamic angle (r>1 and $\theta_{e}^{s}=0^{\circ}$)

• Tanner's Law

Small drop of non-volatile liquid (vol const), complete wetting ($\theta_e^{s}=0^{\circ}$), *r*>>1 and solve

$$\theta = \frac{A}{\left(t + t_o\right)^{3/4}}$$

Summary of Exponents

• Spherical Cap Droplet/Volume Conserved Characteristic length and speed $\kappa^{-1} = \sqrt{\frac{\gamma_{LV}}{\rho g}}$ $v^* = \frac{\gamma_{LV}}{\eta}$ Modified de-Gennes $\theta \propto \left(\frac{V^{1/3}}{v^*}\right)^n \frac{1}{(t+t_o)^n}$

Modified Tanner

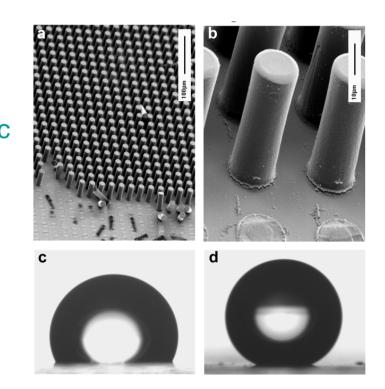
$$v_E \propto v^* \theta^p$$

	Exponent	Exponent	Flat	Rough	
v _E	(1- <i>n</i>)/ <i>n</i>	р	3	1	Cubic \rightarrow Linear
heta	-n	-3/(3 <i>p</i> +1)	-3/10	-3/4	
d	n/3	1/(3 <i>p</i> +1)	1/10	1/4	
R	4 <i>n</i> /3	4/(3 <i>p</i> +1)	4/10	1	
$h_{ m o}$	-2n/3	-2/(3 <i>p</i> +1)	-1/5	-1/2	
A_{SL}	2 <i>n</i> /3	2/(3 <i>p</i> +1)	2/10	1/2	

Drops on SU-8 Photoresist Pillars

- SU-8 Photoresist and Water
 a) and b)Pillars *D*=15 μm, *L* = 2*D*c) Flat and hydrophobic, d) tall and hydrophobic
- Super-Spreading Experiments

 Drops of PDMS, volume ~ μl, Size < κ¹
 Measure dynamic angle, radii, contact
 diameter, volume, etc, as pillar height
 increased



• Analysis of Dynamics

Tanner's Law:Fitting to $\theta \lor t \& d \lor t$ i.e. to find nHoffmann-de Genne:Fitting to $v_{\rm E} \lor \theta$ i.e. to find pPotential Problem:Constant volume and axial symmetry needed

Example Result on Tall Pillars

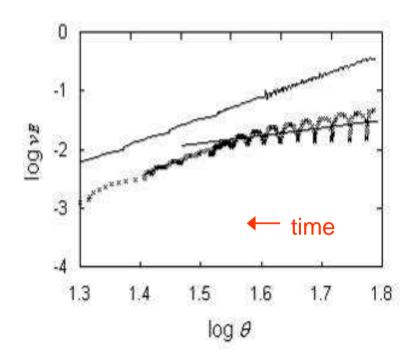
Flat and Tall
Pillars D=15 μm, L = 2D, h = 45 μm
PDMS Spreading to 0°
Upper data is flat surface (slope = 3)
Upper data has been shifted up by 0.5
Lower data is textured (slope = 1.3)

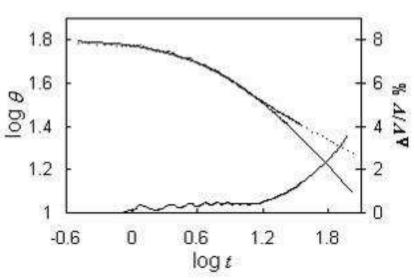
Primary Features

 Periodic osc's (period is 30 µm)
 "stick-slip" on lattice of pillars

 Volume constant over initial period

 at later times pattern fills ahead of drop raises questions of pre-wetting, slip, etc

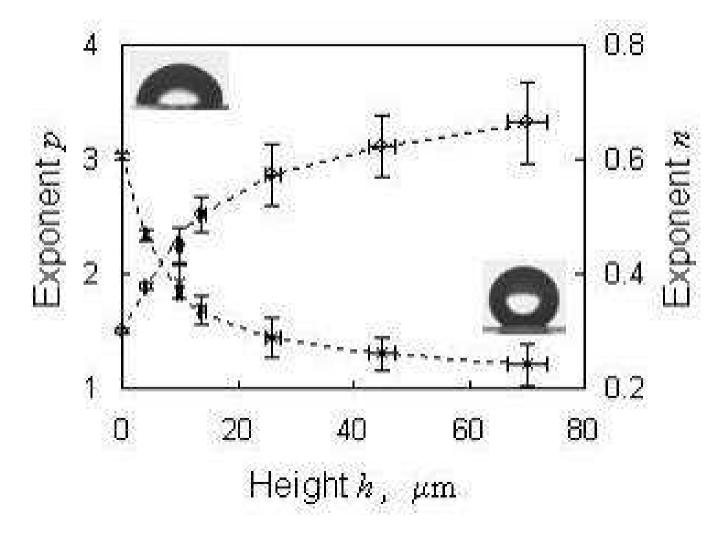




Experimental Data Set on Pillars

• Data for Exponents *p* and *n*

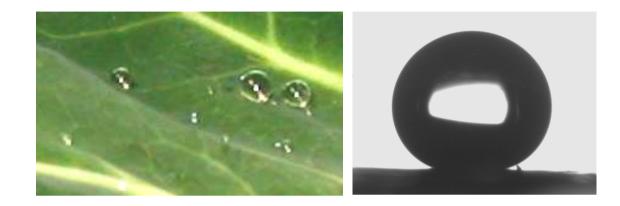
Cubic to linear transition is observed as pillar height increases



Experimental Data on Leaves

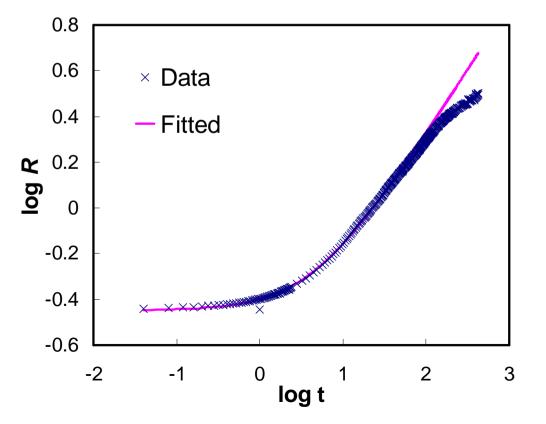
Sprout Leaf

brassica oleracea Super-hydrophobic θ>165°



- Fitting
 - θ , *d* and $v_{\rm E}$ unreliable baseline problem
 - use spherical radius, $R \vee t$

E.g.
$$R \sim (t+t_o)^{0.565} \rightarrow \rho \sim 2$$



The End