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Overview

1. Roughness Induced Complete Wetting
• Equilibrium wetting

• Wenzel v Cassie form of films

2. Dynamic Wetting
• Contact line forces

• de Gennes-Hoffmann equation and Tanner’s Law

3. Experimental Results
• PDMS on lithographic surfaces

• Sprout leaves



Superwetting – Wenzel v Cassie 

Wenzel’s Equation

• Based on roughness, r

• Superwetting (i.e. θe
s
→ θe

w =0o) when

• Ignores any pre-wetting film
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Cassie-Baxter (Complete Wetting)

• Two surfaces: fractions 

ϕs and (1- ϕs)

• Film → Solid θe
s & Own liquid θ =0o

• Assumes film exists and drop volume loss to film is small
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Drops on SU-8 Photoresist Pillars

• SU-8 Photoresist

Flat and bare 84o, flat and hydrophobised 115o, 

tall and 5 µm pattern 155o
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• Super-wetting

SU-8 photoresist

D =15 µm, L = 2D

h = 43 µm

• Wenzel Type

1 µl drop on texture 

over 1 cm × 1 cm area

Drop volume can be 

completely imbibed PDMS



Theory of Spreading

• Hoffmann-de Gennes

Dissipation must equal vEF

Edge speed ∝∝∝∝ cube of dynamic angle (θθθθe
s=0o)

• Tanner’s Law

Small drop of non-volatile liquid (vol const),

complete wetting (θe
s=0o) and solve
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• Driving Force and Viscous Dissipation

Usual force is unresolved component of 

surface tension

Viscous dissipation is
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Spreading on Rough Surfaces

• Hoffmann-de Gennes

Roughness term

Edge speed ∝∝∝∝ dynamic angle (r>1 and θθθθe
s=0o)

• Tanner’s Law

Small drop of non-volatile liquid (vol const),

complete wetting (θe
s=0o), r>>1 and solve

• Driving Force Modified

Roughness modifies the  

component of surface tension
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Summary of Exponents
• Spherical Cap Droplet/Volume Conserved

Characteristic length and speed

Modified de-Gennes

Modified Tanner
p
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Drops on SU-8 Photoresist Pillars

• SU-8 Photoresist and Water
a) and b)Pillars D=15 µm, L = 2D

c) Flat and hydrophobic, d) tall and hydrophobic

• Super-Spreading Experiments

Drops of PDMS, volume ∼ µl, Size <  κ-1

Measure dynamic angle, radii, contact 

diameter, volume, etc, as pillar height 

increased

• Analysis of Dynamics

Tanner’s Law: Fitting to θ v t  & d v t i.e. to find n

Hoffmann-de Genne: Fitting to vE v θ i.e. to find p

Potential Problem: Constant volume and axial symmetry needed



Example Result on Tall Pillars

• Flat and Tall
Pillars D=15 µm, L = 2D, h = 45 µm

PDMS Spreading to 0o

Upper data is flat surface (slope = 3)

Upper data has been shifted up by 0.5

Lower data is textured (slope = 1.3)

• Primary Features

Periodic osc’s (period is 30 µm)

“stick-slip” on lattice of pillars

Volume constant over initial period

at later times pattern fills ahead of drop

raises questions of pre-wetting, slip, etc

time



Experimental Data Set on Pillars

• Data for Exponents p and n
Cubic to linear transition is observed as pillar height increases



Experimental Data on Leaves

• Sprout Leaf

brassica oleracea

Super-hydrophobic θ>165o

• Fitting

θ, d and vE unreliable

baseline problem

use spherical radius, R v t

E.g. R~ (t+to)0.565 → p ~ 2
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The End


